You are given an integer n which represents an array nums containing the numbers from 1 to n in order. Additionally, you are given a 2D array conflictingPairs, where conflictingPairs[i] = [a, b] indicates that a and b form a conflicting pair.
Remove exactly one element from conflictingPairs. Afterward, count the number of non-empty subarrays of nums which do not contain both a and b for any remaining conflicting pair [a, b].
Return the maximum number of subarrays possible after removing exactly one conflicting pair.
Example 1:
Input: n = 4, conflictingPairs = [[2,3],[1,4]]
Output: 9
Explanation:
[2, 3] from conflictingPairs. Now, conflictingPairs = [[1, 4]].nums where [1, 4] do not appear together. They are [1], [2], [3], [4], [1, 2], [2, 3], [3, 4], [1, 2, 3] and [2, 3, 4].conflictingPairs is 9.Example 2:
Input: n = 5, conflictingPairs = [[1,2],[2,5],[3,5]]
Output: 12
Explanation:
[1, 2] from conflictingPairs. Now, conflictingPairs = [[2, 5], [3, 5]].nums where [2, 5] and [3, 5] do not appear together.conflictingPairs is 12.Constraints:
2 <= n <= 1051 <= conflictingPairs.length <= 2 * nconflictingPairs[i].length == 21 <= conflictingPairs[i][j] <= nconflictingPairs[i][0] != conflictingPairs[i][1]When you get asked this question in a real-life environment, it will often be ambiguous (especially at FAANG). Make sure to ask these questions in that case:
The brute force way to solve this problem is to try every single possibility. We will examine all possible removals of one conflicting pair, and for each removal, we will count how many nice groups we have left.
Here's how the algorithm would work step-by-step:
def maximize_subarrays_brute_force(array_of_numbers):
conflicting_pairs = []
for first_index in range(len(array_of_numbers) - 1):
if array_of_numbers[first_index] >= array_of_numbers[first_index + 1]:
conflicting_pairs.append((first_index, first_index + 1))
max_nice_subarrays = 0
for conflicting_pair in conflicting_pairs:
# Create a copy to not modify the original
temp_array = array_of_numbers[:]
# Remove conflicting pair indices from the copy
index_one, index_two = conflicting_pair
del temp_array[max(index_one, index_two)]
del temp_array[min(index_one, index_two)]
nice_subarrays_count = 1
if not temp_array:
max_nice_subarrays = max(max_nice_subarrays, nice_subarrays_count)
continue
# Count subarrays after removal
for index in range(len(temp_array) - 1):
if temp_array[index] < temp_array[index + 1]:
nice_subarrays_count += 1
# Record maximum
max_nice_subarrays = max(max_nice_subarrays, nice_subarrays_count)
# If no conflicting pairs exist, return original count
if not conflicting_pairs:
nice_subarrays_count = 1
for index in range(len(array_of_numbers) - 1):
if array_of_numbers[index] < array_of_numbers[index + 1]:
nice_subarrays_count += 1
return nice_subarrays_count
return max_nice_subarraysThe core idea is to find the pair of conflicting activities that cause the fewest number of subarrays when removed. We don't actually remove anything; instead, we count the subarrays if we *pretend* we've removed a pair, and keep track of the best outcome.
Here's how the algorithm would work step-by-step:
def maximize_subarrays(activities):
number_of_activities = len(activities)
maximum_subarrays = 0
# Calculate initial number of subarrays
initial_subarrays = count_subarrays(activities)
maximum_subarrays = initial_subarrays
for i in range(number_of_activities):
for j in range(i + 1, number_of_activities):
# Identify potential conflicting pairs
if activities[i][1] > activities[j][0] and activities[j][1] > activities[i][0]:
# Create a temporary schedule excluding the pair
temp_activities = []
for k in range(number_of_activities):
if k != i and k != j:
temp_activities.append(activities[k])
# Count subarrays without the conflicting pair
number_of_subarrays = count_subarrays(temp_activities)
maximum_subarrays = max(maximum_subarrays, number_of_subarrays)
return maximum_subarrays
def count_subarrays(activities):
if not activities:
return 0
activities.sort(key=lambda x: x[0])
number_of_subarrays = 1
last_end_time = activities[0][1]
# Count subarrays based on non-overlapping intervals
for i in range(1, len(activities)):
if activities[i][0] >= last_end_time:
# If start time is greater than last end time, increment
number_of_subarrays += 1
last_end_time = activities[i][1]
else:
last_end_time = min(last_end_time, activities[i][1])
return number_of_subarrays
| Case | How to Handle |
|---|---|
| Empty input array | Return 0 as no subarrays can be formed. |
| Array with one element | Return 0 as no pair can be removed. |
| Array where no subarrays with sum k can be formed initially or after removing any pair. | The algorithm should return 0 in this case. |
| Integer overflow when calculating subarray sums. | Use long data type to store sums to prevent overflow. |
| Array with all elements equal to k, but length not a multiple of k. | Removing any pair should result in more k-sum subarrays. |
| Array with negative numbers | The algorithm should correctly handle negative numbers when calculating subarray sums. |
| Large array size leading to potential memory issues with storing sums or indices | Optimize memory usage by only storing necessary information and avoiding unnecessary data structures. |
| Cases where removing different pairs leads to the same maximum number of subarrays | The algorithm is designed to find *a* maximum, not *all* maximums, and can simply return one. |