You are given a string representation of a binary tree. The string consists of integers (node values) and parentheses. Each node is represented as value(left subtree)(right subtree)
. If a node only has one child, the other child's subtree is represented by an empty parenthesis ()
. The absence of parentheses indicates a missing subtree.
Example:
"4(2(3)(1))(6(5)())"
represents the following tree:
4
/ \
2 6
/ \ / \
3 1 5 .
"4(2(3)(1))(6(5))"
represents the following tree:
4
/ \
2 6
/ \ /
3 1 5
"-4(2(3)(1))(6(5)())"
represents the following tree:
-4
/ \
2 6
/ \ / \
3 1 5 .
Your task is to write a function that takes a string representation of a binary tree and constructs the corresponding TreeNode
. If the input string is empty, return null
.
class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) { this.val = val; }
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
public class Solution {
public TreeNode str2tree(String s) {
// Implement your solution here
return null;
}
}
When you get asked this question in a real-life environment, it will often be ambiguous (especially at FAANG). Make sure to ask these questions in that case:
The goal is to build a tree from a string that represents the tree's structure. The brute force method explores every possible tree arrangement, even if it's inefficient. It's like trying every single arrangement of branches and nodes until you find one that matches the string's description.
Here's how the algorithm would work step-by-step:
class TreeNode:
def __init__(self, value):
self.value = value
self.left = None
self.right = None
def construct_binary_tree_from_string_brute_force(tree_string):
def parse_tree_string(substring, index):
if index >= len(substring):
return None, index
# Extract node value
start = index
while index < len(substring) and substring[index].isdigit():
index += 1
if start == index:
return None, index # No node value found
node_value = int(substring[start:index])
new_node = TreeNode(node_value)
# Check for left child
if index < len(substring) and substring[index] == '(':
index += 1
new_node.left, index = parse_tree_string(substring, index)
# Check if left parsing successful before right
if new_node.left:
if index < len(substring) and substring[index] == '(':
index += 1
new_node.right, index = parse_tree_string(substring, index)
if new_node.right and index < len(substring) and substring[index] == ')':
index += 1
return new_node, index
else:
return None, len(substring) # Invalid structure
elif index < len(substring) and substring[index] == ')':
index += 1
return new_node, index #Only left child exists
else:
return None, len(substring) #Error when parsing
else:
return None, len(substring)
# If no children and only a number return
return new_node, index
root, _ = parse_tree_string(tree_string, 0)
return root
The best way to build the tree from the string is to process the string piece by piece, using a system to understand the structure. We use something like a temporary holding area to keep track of where we are in the tree-building process as we go.
Here's how the algorithm would work step-by-step:
class TreeNode:
def __init__(self, value):
self.value = value
self.left = None
self.right = None
def construct_binary_tree_from_string(tree_string):
if not tree_string:
return None
current_position = 0
def parse_tree():
nonlocal current_position
# Extract number for the current node.
start = current_position
while current_position < len(tree_string) and tree_string[current_position].isdigit() or tree_string[current_position] == '-':
current_position += 1
if start == current_position:
return None
node_value = int(tree_string[start:current_position])
current_node = TreeNode(node_value)
# Check if left child exists.
if current_position < len(tree_string) and tree_string[current_position] == '(':
current_position += 1
current_node.left = parse_tree()
# Parse the rest of the string.
if current_position < len(tree_string) and tree_string[current_position] == ')':
current_position += 1
# Check if right child exists.
if current_position < len(tree_string) and tree_string[current_position] == '(':
current_position += 1
current_node.right = parse_tree()
# Parse the rest of the string.
if current_position < len(tree_string) and tree_string[current_position] == ')':
current_position += 1
return current_node
# Initiate tree construction, parsing the whole string.
root = parse_tree()
return root
Case | How to Handle |
---|---|
Null or empty input string | Return null, indicating an invalid tree cannot be constructed. |
String with only parenthesis '()' | Return null as '()' doesn't define a valid node value. |
String with a single node value and no children e.g., '4' | Create a single node tree with the value 4 and return it. |
String with improperly nested parentheses, e.g., '(4(2)(3)))' | Throw an exception indicating an invalid string format. |
String with non-numeric characters within node values, e.g., '(4a(2)(3))' | Throw an exception during node value parsing. |
String with leading/trailing spaces or spaces within the value, e.g., ' (4 (2)(3)) ' | Trim the entire string and handle potential spaces within value parsing or throw an exception. |
Deeply nested tree structure, potentially causing stack overflow with recursive solutions | Consider an iterative approach using a stack to avoid recursion depth limits. |
Integer overflow when parsing node values from the string | Use appropriate data types and error checking to handle potential overflow scenarios. |