Given a string s
that contains parentheses and letters, remove the minimum number of invalid parentheses to make the input string valid.
Return a list of unique strings that are valid with the minimum number of removals. You may return the answer in any order.
Example 1:
Input: s = "()())"
Output: ["()()"]
Example 2:
Input: s = "(a)())"
Output: ["(a)()[
When you get asked this question in a real-life environment, it will often be ambiguous (especially at FAANG). Make sure to ask these questions in that case:
The brute force approach to removing invalid parentheses is like trying every single possible combination of removing parentheses from the input string. We generate all possible strings by removing different sets of parentheses and then check if each resulting string is valid.
Here's how the algorithm would work step-by-step:
def remove_invalid_parentheses_brute_force(input_string):
all_possible_strings = set()
def generate_possible_strings(current_string, index, string_so_far):
if index == len(current_string):
all_possible_strings.add(string_so_far)
return
# Option 1: Include the current character
generate_possible_strings(current_string, index + 1, string_so_far + current_string[index])
# Option 2: Exclude the current character. Necessary to check all combinations.
generate_possible_strings(current_string, index + 1, string_so_far)
generate_possible_strings(input_string, 0, "")
def is_valid(string_to_check):
balance = 0
for char in string_to_check:
if char == '(':
balance += 1
elif char == ')':
balance -= 1
if balance < 0:
return False
return balance == 0
valid_strings = []
for possible_string in all_possible_strings:
if is_valid(possible_string):
valid_strings.append(possible_string)
if not valid_strings:
return [""]
max_length = max(len(valid_string) for valid_string in valid_strings)
# Only keep the valid strings with maximum length.
result = [valid_string for valid_string in valid_strings if len(valid_string) == max_length]
return result
The goal is to find all possible strings with the fewest invalid parentheses by removing as few as possible. Instead of trying every single combination, we'll use a focused search to efficiently explore potential valid strings.
Here's how the algorithm would work step-by-step:
def remove_invalid_parentheses(input_string):
def is_valid(string_to_check):
balance = 0
for char in string_to_check:
if char == '(':
balance += 1
elif char == ')':
balance -= 1
if balance < 0:
return False
return balance == 0
def calculate_removals(input_string):
left_removals_needed = 0
right_removals_needed = 0
for char in input_string:
if char == '(':
left_removals_needed += 1
elif char == ')':
if left_removals_needed > 0:
left_removals_needed -= 1
else:
right_removals_needed += 1
return left_removals_needed, right_removals_needed
left_removals, right_removals = calculate_removals(input_string)
queue = {input_string}
results = set()
longest_length = -1
while queue:
current_string = queue.pop()
if is_valid(current_string):
#Add valid strings to the result
if len(current_string) > longest_length:
results = {current_string}
longest_length = len(current_string)
elif len(current_string) == longest_length:
results.add(current_string)
if len(current_string) < longest_length:
continue
#Only explore if necessary removals remain
if left_removals == 0 and right_removals == 0:
continue
for index, char in enumerate(current_string):
if char == '(' or char == ')':
#Avoid redundant removals
next_string = current_string[:index] + current_string[index+1:]
if next_string not in queue:
queue.add(next_string)
return list(results)
Case | How to Handle |
---|---|
Empty string input | Return an empty list as there are no parentheses to remove. |
Input string with no parentheses | Return the input string as it is already valid. |
Input string with only opening parentheses | Remove all opening parentheses to get an empty valid string. |
Input string with only closing parentheses | Remove all closing parentheses to get an empty valid string. |
Input string with deeply nested valid parentheses | The solution should handle nested structures without stack overflow, often achieved by iterative methods instead of recursion. |
Input string with many invalid parentheses clustered together | The algorithm should efficiently explore different removal combinations to find the valid strings. |
Input string with characters other than '(' and ')' | The solution should only consider parentheses characters for validity checks, ignoring other characters. |
Large input string that could lead to a large number of valid solutions | Consider using a set to avoid duplicate results and potentially improve performance by pruning the search space. |