A valid parentheses string is either empty ""
, "(" + A + ")"
, or A + B
, where A
and B
are valid parentheses strings, and +
represents string concatenation. For example, ""
, "()"
, "(())()"
, and "(()(()))"
are all valid parentheses strings.
A valid parentheses string s
is primitive if it is nonempty, and there does not exist a way to split it into s = A + B
, with A
and B
nonempty valid parentheses strings.
Given a valid parentheses string s
, consider its primitive decomposition: s = P1 + P2 + ... + Pk
, where Pi
are primitive valid parentheses strings.
Return s
after removing the outermost parentheses of every primitive string in the primitive decomposition of s
.
Example 1:
Input: s = "(()())(())"
Output: "()()()"
Explanation: The input string is `"(()())(())
When you get asked this question in a real-life environment, it will often be ambiguous (especially at FAANG). Make sure to ask these questions in that case:
The brute force approach involves examining every possible way to remove matching outer parentheses from the given string. We try removing different combinations of outermost pairs and see what is left. We continue this process until we find the simplest result.
Here's how the algorithm would work step-by-step:
def remove_outermost_parentheses_brute_force(parentheses_string):
shortest_result = parentheses_string
# Iterate through all possible numbers of pairs to remove
for num_pairs_to_remove in range(len(parentheses_string) // 2 + 1):
possible_results = generate_results(
parentheses_string, num_pairs_to_remove
)
# Find the shortest result among current possibilities
for current_result in possible_results:
if len(current_result) < len(shortest_result):
shortest_result = current_result
return shortest_result
def generate_results(parentheses_string, num_pairs_to_remove):
results = []
generate_combinations(
parentheses_string, num_pairs_to_remove, results, ""
)
return results
def generate_combinations(
parentheses_string, num_pairs_to_remove, results, current_combination
):
if num_pairs_to_remove == 0:
# No more pairs to remove, add remainder
results.append(current_combination + parentheses_string)
return
if not parentheses_string:
return
open_index = -1
close_index = -1
balance = 0
# Find matching outermost parentheses
for index, char in enumerate(parentheses_string):
if char == '(':
balance += 1
if open_index == -1:
open_index = index
elif char == ')':
balance -= 1
if balance == 0:
close_index = index
break
if open_index != -1 and close_index != -1:
# Remove outermost parentheses pair
remaining_string = (
parentheses_string[:open_index]
+ parentheses_string[open_index + 1 : close_index]
+ parentheses_string[close_index + 1 :]
)
generate_combinations(
remaining_string,
num_pairs_to_remove - 1,
results,
current_combination,
)
else:
# No matching parentheses, add the original string
results.append(current_combination + parentheses_string)
The goal is to remove the outermost matching parentheses from groups within a larger string of parentheses. We keep track of the balance between open and close parentheses to know when a group starts and ends. We only add parentheses that are *not* the outermost ones.
Here's how the algorithm would work step-by-step:
def remove_outer_parentheses(parentheses_string):
open_parentheses_count = 0
result_string = ""
for character in parentheses_string:
if character == '(':
# Add to result only if it's not the outermost opening parenthesis.
if open_parentheses_count > 0:
result_string += character
open_parentheses_count += 1
elif character == ')':
open_parentheses_count -= 1
# Add to result only if it's not the outermost closing parenthesis.
if open_parentheses_count > 0:
result_string += character
return result_string
Case | How to Handle |
---|---|
Empty string input | Return an empty string immediately since there are no parentheses to process. |
Input string with no parentheses | Return the original string as there's nothing to remove. |
Input string with only one pair of parentheses | Return an empty string after removing the only outermost pair. |
Nested parentheses with multiple layers of nesting | The counter-based approach correctly handles the depth and identifies outermost parentheses for removal. |
Unbalanced parentheses (more opening than closing or vice-versa) | The counter will not return to 0, leaving the unbalanced parentheses in the result. |
String with multiple primitive valid parentheses strings concatenated | The algorithm correctly identifies and removes the outermost parentheses of each primitive string. |
Input string containing characters other than '(' and ')' | The algorithm only considers parentheses, effectively ignoring other characters. |
Maximum string length to prevent excessive memory usage | Implement a check at the start to reject strings exceeding a predefined maximum length. |