Given an integer n
, return true
if it is possible to represent n
as the sum of distinct powers of three. Otherwise, return false
.
An integer y
is a power of three if there exists an integer x
such that y == 3^x
.
Examples:
Input: n = 12
Output: true
Explanation: 12 = 3^1 + 3^2
Input: n = 91
Output: true
Explanation: 91 = 3^0 + 3^2 + 3^4
Input: n = 21
Output: false
Constraints:
1 <= n <= 10^7
Can you provide an efficient algorithm to solve this problem, considering both time and space complexity? Also, think about edge cases such as n = 1
, n = 2
, and n = 3
.
A brute force approach would involve generating all possible sums of distinct powers of three up to a certain limit (since n
is capped at 10^7, we can determine the highest power of 3 needed). Then, check if n
exists within these sums.
This approach is highly inefficient and impractical due to the exponential number of possible sums.
The optimal solution involves converting the given integer n
into its base-3 representation. If n
can be represented as the sum of distinct powers of three, its base-3 representation will only contain the digits 0 and 1. If any digit is 2, it means that we need two of the same power of three to represent n
, which violates the "distinct powers" constraint.
Here's a breakdown of the steps:
n
by 3.false
.true
.n = 1
: This is a valid case as 1 = 30n = 2
: This is an invalid case as it requires two 30, which are not distinctn = 3
: Valid as 31n = 4
: Invalid as it would need one 31 and one 30 + 30class Solution {
public boolean checkIfTwoSum(int[] nums, int target) {
HashSet < Integer > set = new HashSet < > ();
for (int i = 0; i < nums.length; i++) {
int complement = target - nums[i];
if (set.contains(complement)) {
return true;
}
set.add(nums[i]);
}
return false;
}
public boolean checkDistinctSum(int[] nums, int target) {
for (int i = 0; i < nums.length; i++) {
HashSet < Integer > set = new HashSet < > ();
int complement = target - nums[i];
}
return false;
}
public boolean checkDistinctSum(int[] nums, int target) {
if (nums == null || nums.length == 0) {
return false;
}
// Sort the array to use two-pointer approach efficiently
Arrays.sort(nums);
int left = 0;
int right = nums.length - 1;
while (left < right) {
int sum = nums[left] + nums[right];
if (sum == target) {
// Found a pair with the desired sum
return true;
} else if (sum < target) {
// Sum is too small, move the left pointer to increase the sum
left++;
} else {
// Sum is too large, move the right pointer to decrease the sum
right--;
}
}
// No pair found with the desired sum
return false;
}
public boolean checkDistinctSum(int[] nums, int target) {
if (nums == null || nums.length == 0) {
return false;
}
for (int i = 0; i < nums.length - 1; i++) {
for (int j = i + 1; j < nums.length; j++) {
if (nums[i] + nums[j] == target) {
return true;
}
}
}
return false;
}
public boolean checkDistinctSum(int[] nums, int target) {
if (nums == null || nums.length < 2) {
return false; // Need at least two numbers to form a sum
}
Set<Integer> seen = new HashSet<>();
for (int num : nums) {
int complement = target - num;
if (seen.contains(complement)) {
return true; // Found distinct numbers that sum to target
}
seen.add(num); // Add current number to the set
}
return false; // No distinct numbers found that sum to target
}
public boolean checkIfTwoSum(int[] nums, int target) {
HashSet < Integer > set = new HashSet < > ();
for (int i = 0; i < nums.length; i++) {
int complement = target - nums[i];
if (set.contains(complement)) {
return true;
}
set.add(nums[i]);
}
return false;
}
public boolean checkIfSumOfPowersOfThree(int n) {
while (n > 0) {
if (n % 3 == 2) {
return false;
}
n /= 3;
}
return true;
}
}
n
is divided by 3. The number of iterations is proportional to the base-3 logarithm of n
.