You are given an integer array nums
. You need to implement a class NumArray
that can handle the following types of queries:
nums
.nums
.The NumArray
class should have the following methods:
NumArray(int[] nums)
: Initializes the object with the given integer array nums
.void update(int index, int val)
: Updates the value of nums[index]
to val
.int sumRange(int left, int right)
: Returns the sum of elements from index left
to right
(inclusive), i.e., nums[left] + nums[left + 1] + ... + nums[right]
.Example:
NumArray numArray = new NumArray([1, 3, 5]);
numArray.sumRange(0, 2); // Returns 9 (1 + 3 + 5)
numArray.update(1, 2); // nums becomes [1, 2, 5]
numArray.sumRange(0, 2); // Returns 8 (1 + 2 + 5)
Constraints:
1 <= nums.length <= 3 * 10^4
-100 <= nums[i] <= 100
0 <= index < nums.length
-100 <= val <= 100
0 <= left <= right < nums.length
update
and sumRange
methods will be called at most 3 * 10^4
times.Design an efficient implementation for the NumArray
class, considering both time and space complexity.
When you get asked this question in a real-life environment, it will often be ambiguous (especially at FAANG). Make sure to ask these questions in that case:
The brute force method for this problem is straightforward. To find a sum, we will simply add up all the relevant numbers. When a number changes, we will directly update our list of numbers.
Here's how the algorithm would work step-by-step:
class NumArray:
def __init__(self, numbers):
self.numbers_list = numbers
def update(self, index, value):
# Directly update the number at the given index
self.numbers_list[index] = value
def sumRange(self, left_index, right_index):
range_sum = 0
# Iterate from left to right index to sum all the elements
for index in range(left_index, right_index + 1):
range_sum += self.numbers_list[index]
return range_sum
To efficiently manage sums of ranges within a dataset that changes, we use a data structure allowing quick updates and range calculations. The key idea is to precompute and store partial sums in a tree-like structure, enabling us to update individual values and retrieve range sums rapidly.
Here's how the algorithm would work step-by-step:
class NumArray:
def __init__(self, nums):
self.numbers = nums
self.segment_tree = [0] * (4 * len(nums))
if nums:
self.build_segment_tree(0, 0, len(nums) - 1)
def build_segment_tree(self, segment_tree_index, left, right):
if left == right:
self.segment_tree[segment_tree_index] = self.numbers[left]
return
middle = (left + right) // 2
self.build_segment_tree(2 * segment_tree_index + 1, left, middle)
self.build_segment_tree(2 * segment_tree_index + 2, middle + 1, right)
# Each node stores sum of its children
self.segment_tree[segment_tree_index] = self.segment_tree[2 * segment_tree_index + 1] + self.segment_tree[2 * segment_tree_index + 2]
def update(self, index, value):
self.update_segment_tree(0, 0, len(self.numbers) - 1, index, value)
self.numbers[index] = value
def update_segment_tree(self, segment_tree_index, left, right, index, value):
if left == right:
self.segment_tree[segment_tree_index] = value
return
middle = (left + right) // 2
if index <= middle:
self.update_segment_tree(2 * segment_tree_index + 1, left, middle, index, value)
else:
self.update_segment_tree(2 * segment_tree_index + 2, middle + 1, right, index, value)
# Propagate changes up the tree
self.segment_tree[segment_tree_index] = self.segment_tree[2 * segment_tree_index + 1] + self.segment_tree[2 * segment_tree_index + 2]
def sumRange(self, left, right):
return self.sum_range_segment_tree(0, 0, len(self.numbers) - 1, left, right)
def sum_range_segment_tree(self, segment_tree_index, left, right, query_left, query_right):
if query_left <= left and right <= query_right:
return self.segment_tree[segment_tree_index]
if right < query_left or query_right < left:
return 0
middle = (left + right) // 2
# Sum up sums of children to calculate range
return self.sum_range_segment_tree(2 * segment_tree_index + 1, left, middle, query_left, query_right) + self.sum_range_segment_tree(2 * segment_tree_index + 2, middle + 1, right, query_left, query_right)
# Your NumArray object will be instantiated and called as such:
# nums = [1, 3, 5]
# obj = NumArray(nums)
# obj.update(1, 2)
# param_2 = obj.sumRange(0, 2)
Case | How to Handle |
---|---|
Null or empty input array | The constructor should throw an IllegalArgumentException or return without initializing the segment tree, and update/sumRange should handle the uninitialized state gracefully, potentially returning 0 or throwing an exception. |
Array with a single element | The segment tree should be constructed correctly and update/sumRange operations should work as expected on that single element. |
Large input array (performance considerations) | The segment tree construction should be O(n) and update/sumRange operations should be O(log n) to ensure scalability; consider using iterative approach for construction to avoid stack overflow with deep recursion. |
Array with all identical values | The segment tree construction and operations (update and sumRange) should function correctly; specifically ensure the tree nodes containing sum of the range is updated appropriately. |
Array with negative numbers | The segment tree implementation needs to correctly handle negative numbers in the array and during sum calculation; ensure the sum variable type has enough capacity to handle potential negative overflow. |
Update index out of bounds | The update function should throw an IndexOutOfBoundsException or return without modifying the array or segment tree to avoid unexpected behavior. |
sumRange with left > right | The sumRange function should either return 0, throw an IllegalArgumentException or swap the left and right indices to ensure correct calculation. |
Integer overflow during sum calculation | Use `long` data type for storing sum in the segment tree nodes to prevent integer overflow during large range sum computations. |