Given the root of a binary search tree, a target value target, and an integer k, return the k values in the BST that are closest to the target.
You should return the answer sorted from the smallest to the largest value.
Example 1:
Input: root = [4,2,5,1,3], target = 3.714286, k = 2 Output: [4,3]
Example 2:
Input: root = [1], target = 0.000000, k = 1 Output: [1]
Constraints:
n.1 <= k <= n <= 1040 <= Node.val <= 109-109 <= target <= 109Follow up:
O(n) runtime (where n = total nodes)?When you get asked this question in a real-life environment, it will often be ambiguous (especially at FAANG). Make sure to ask these questions in that case:
The goal is to find the 'k' closest values to a target value in a binary search tree. The brute force method explores all possible values in the tree and picks the best ones.
Here's how the algorithm would work step-by-step:
def closest_binary_search_tree_value_ii_brute_force(root, target, k):
all_values = []
def inorder_traversal(node):
if not node:
return
inorder_traversal(node.left)
all_values.append(node.val)
inorder_traversal(node.right)
inorder_traversal(root)
# Collect all values from the BST using inorder traversal.
value_distance_pairs = []
for value in all_values:
distance = abs(value - target)
value_distance_pairs.append((distance, value))
# Calculate distances of each value from the target.
value_distance_pairs.sort()
# Sort values based on their distances to target
closest_values = []
for i in range(k):
closest_values.append(value_distance_pairs[i][1])
# Extract the k closest values.
return closest_valuesThe task is to find the 'k' closest values to a target value in a binary search tree. Instead of looking at every single node, we can use the properties of a binary search tree to efficiently narrow down our search and maintain a running list of the closest values.
Here's how the algorithm would work step-by-step:
def find_closest_elements(root, target, k):
closest_values = []
def inorder(node):
if not node:
return []
return inorder(node.left) + [node.val] + inorder(node.right)
inorder_list = inorder(root)
# Find the element closest to the target
closest_element_index = min(range(len(inorder_list)), key=lambda i: abs(inorder_list[i] - target))
closest_values.append(inorder_list[closest_element_index])
left_pointer = closest_element_index - 1
right_pointer = closest_element_index + 1
while len(closest_values) < k:
# Handle edge cases where one pointer goes out of bounds
if left_pointer < 0:
closest_values.append(inorder_list[right_pointer])
right_pointer += 1
elif right_pointer >= len(inorder_list):
closest_values.append(inorder_list[left_pointer])
left_pointer -= 1
else:
# Compare distances to decide which pointer to move
if abs(inorder_list[left_pointer] - target) < abs(inorder_list[right_pointer] - target):
closest_values.append(inorder_list[left_pointer])
left_pointer -= 1
else:
closest_values.append(inorder_list[right_pointer])
right_pointer += 1
return closest_values| Case | How to Handle |
|---|---|
| Empty Tree | Return an empty list if the tree is null, as there are no nodes to process. |
| Target value smaller than all nodes in the tree | Return the 'k' smallest nodes from the tree in ascending order. |
| Target value larger than all nodes in the tree | Return the 'k' largest nodes from the tree in descending order. |
| Tree with only one node | Return a list containing only that node's value if k=1, otherwise handle according to k's size. |
| k is greater than the number of nodes in the tree | Return all nodes in the tree, sorted by their proximity to the target. |
| Tree contains duplicate values | The in-order traversal will handle duplicates correctly, as we consider all nodes regardless of value. |
| Integer Overflow if nodes have very large values and target is also large | Use long type for intermediate calculations of differences to prevent overflow during absolute difference computation. |
| k is zero or negative | Return an empty list if k is zero or negative since no elements are required. |