You are given two integer arrays nums1
and nums2
. You are tasked to implement a data structure that supports queries of two types:
nums2
.(i, j)
such that nums1[i] + nums2[j]
equals a given value (0 <= i < nums1.length
and 0 <= j < nums2.length
).Implement the FindSumPairs
class:
FindSumPairs(int[] nums1, int[] nums2)
Initializes the FindSumPairs
object with two integer arrays nums1
and nums2
.void add(int index, int val)
Adds val
to nums2[index]
, i.e., apply nums2[index] += val
.int count(int tot)
Returns the number of pairs (i, j)
such that nums1[i] + nums2[j] == tot
.Example 1:
Input ["FindSumPairs", "count", "add", "count", "count", "add", "add", "count"] [[[1, 1, 2, 2, 2, 3], [1, 4, 5, 2, 5, 4]], [7], [3, 2], [8], [4], [0, 1], [1, 1], [7]] Output [null, 8, null, 2, 1, null, null, 11] Explanation FindSumPairs findSumPairs = new FindSumPairs([1, 1, 2, 2, 2, 3], [1, 4, 5, 2, 5, 4]); findSumPairs.count(7); // return 8; pairs (2,2), (3,2), (4,2), (2,4), (3,4), (4,4) make 2 + 5 and pairs (5,1), (5,5) make 3 + 4 findSumPairs.add(3, 2); // now nums2 = [1,4,5,4,5,4
] findSumPairs.count(8); // return 2; pairs (5,2), (5,4) make 3 + 5 findSumPairs.count(4); // return 1; pair (5,0) makes 3 + 1 findSumPairs.add(0, 1); // now nums2 = [2
,4,5,4,5,4
] findSumPairs.add(1, 1); // now nums2 = [2
,5,5,4,5,4
] findSumPairs.count(7); // return 11; pairs (2,1), (2,2), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,4) make 2 + 5 and pairs (5,3), (5,5) make 3 + 4
Constraints:
1 <= nums1.length <= 1000
1 <= nums2.length <= 105
1 <= nums1[i] <= 109
1 <= nums2[i] <= 105
0 <= index < nums2.length
1 <= val <= 105
1 <= tot <= 109
1000
calls are made to add
and count
each.When you get asked this question in a real-life environment, it will often be ambiguous (especially at FAANG). Make sure to ask these questions in that case:
We're given a list of numbers and a target sum. The brute force method checks every possible pairing of numbers to see if any pair adds up to the target.
Here's how the algorithm would work step-by-step:
def find_pairs_with_certain_sum_brute_force(number_list, target_sum):
found_pairs = []
for first_number_index in range(len(number_list)):
# Iterate through all possible pairs with the first number
for second_number_index in range(first_number_index + 1, len(number_list)):
# Avoid duplicate pairs by starting from the next index
if number_list[first_number_index] + number_list[second_number_index] == target_sum:
found_pairs.append((first_number_index, second_number_index))
return found_pairs
To efficiently find pairs that add up to a target number, we use a method that quickly checks if the number needed to complete the pair exists. This way, we avoid comparing each number with every other number, saving a lot of time.
Here's how the algorithm would work step-by-step:
def find_pairs_with_sum(number_list, target_sum):
seen_numbers = set()
pairs = []
for current_number in number_list:
complement = target_sum - current_number
# Check if the complement exists in the numbers we've seen so far.
if complement in seen_numbers:
pairs.append((current_number, complement))
# Store the current number to check against later complements.
seen_numbers.add(current_number)
return pairs
Case | How to Handle |
---|---|
Null or undefined input array | Throw an IllegalArgumentException or return an empty list immediately. |
Array with only one element | Return an empty list immediately since a pair requires at least two elements. |
Large input array size that could cause memory issues with a hashmap approach | Consider using a two-pointer approach after sorting if memory is a constraint, though it would change time complexity. |
Array contains extremely large positive or negative numbers that could lead to integer overflow when summing | Use long data type to prevent integer overflow during the summation. |
Target sum is very large or very small compared to the array elements | The algorithm should still correctly identify (or not identify) matching pairs regardless of the target's magnitude. |
No pairs exist that sum to the target value | Return an empty list when no such pairs are found, indicating no solution. |
Multiple pairs exist that sum to the target value, and the prompt only asks for one pair | Return the first pair found or all pairs if the problem asks for all. |
Array contains duplicate pairs of numbers summing to target | Store the pairs in a set to avoid duplicate pairs in the results, if necessary. |