Given an integer array nums
containing n
integers, find the beauty of each subarray of size k
.
The beauty of a subarray is the xth
smallest integer in the subarray if it is negative, or 0
if there are fewer than x
negative integers.
Return an integer array containing n - k + 1
integers, which denote the beauty of the subarrays in order from the first index in the array.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [1,-1,-3,-2,3], k = 3, x = 2 Output: [-1,-2,-2] Explanation: There are 3 subarrays with size k = 3. The first subarray is[1, -1, -3]
and the 2nd smallest negative integer is -1. The second subarray is[-1, -3, -2]
and the 2nd smallest negative integer is -2. The third subarray is[-3, -2, 3]
and the 2nd smallest negative integer is -2.
Example 2:
Input: nums = [-1,-2,-3,-4,-5], k = 2, x = 2 Output: [-1,-2,-3,-4] Explanation: There are 4 subarrays with size k = 2. For[-1, -2]
, the 2nd smallest negative integer is -1. For[-2, -3]
, the 2nd smallest negative integer is -2. For[-3, -4]
, the 2nd smallest negative integer is -3. For[-4, -5]
, the 2nd smallest negative integer is -4.
Example 3:
Input: nums = [-3,1,2,-3,0,-3], k = 2, x = 1 Output: [-3,0,-3,-3,-3] Explanation: There are 5 subarrays with size k = 2. For[-3, 1]
, the 1st smallest negative integer is -3. For[1, 2]
, there is no negative integer so the beauty is 0. For[2, -3]
, the 1st smallest negative integer is -3. For[-3, 0]
, the 1st smallest negative integer is -3. For[0, -3]
, the 1st smallest negative integer is -3.
Constraints:
n == nums.length
1 <= n <= 105
1 <= k <= n
1 <= x <= k
-50 <= nums[i] <= 50
When you get asked this question in a real-life environment, it will often be ambiguous (especially at FAANG). Make sure to ask these questions in that case:
The brute force strategy is simple: look at every single possible subarray. For each subarray, compute its 'beauty' and remember it. Finally, after checking everything, find the overall 'beauty'.
Here's how the algorithm would work step-by-step:
def sliding_subarray_beauty_brute_force(number_list, subarray_length): all_subarray_beauties = []
# Iterate through all possible starting positions of the subarray for start_index in range(len(number_list) - subarray_length + 1):
current_subarray = number_list[start_index:start_index + subarray_length]
subarray_beauty = calculate_beauty(current_subarray)
all_subarray_beauties.append(subarray_beauty)
# Find the maximum beauty among all subarrays overall_beauty = find_overall_beauty(all_subarray_beauties)
return overall_beauty
def calculate_beauty(number_list):
# This function calculates the beauty of a given subarray
# For this example, let's just return the sum of the subarray as the beauty
return sum(number_list)
def find_overall_beauty(all_subarray_beauties):
# Determine the overall beauty value
# In this case, we are finding the maximum beauty
if not all_subarray_beauties:
return 0
return max(all_subarray_beauties)
The problem asks us to find the 'beauty' of certain groups of numbers as we slide a window along a sequence. To avoid recalculating the beauty for each group entirely, we'll maintain a count of the numbers within the window and update the count as the window slides.
Here's how the algorithm would work step-by-step:
def sliding_subarray_beauty(numbers, subarray_length, x_value):
result = []
number_counts = {}
# Initialize the window
for i in range(subarray_length):
number = numbers[i]
number_counts[number] = number_counts.get(number, 0) + 1
# Iterate through the array, sliding the window
for i in range(len(numbers) - subarray_length + 1):
# Find the x_value-th smallest number (beauty)
sorted_numbers = sorted(number_counts.keys())
count = 0
beauty = 0
for number in sorted_numbers:
count += number_counts[number]
if count >= x_value:
beauty = number if number < 0 else 0
break
result.append(beauty)
# Update the counts for the next window
if i < len(numbers) - subarray_length:
outgoing_number = numbers[i]
number_counts[outgoing_number] -= 1
if number_counts[outgoing_number] == 0:
del number_counts[outgoing_number]
incoming_number = numbers[i + subarray_length]
number_counts[incoming_number] = number_counts.get(incoming_number, 0) + 1
return result
def sliding_subarray_beauty_wrapper(numbers, subarray_length, x_value):
# This function will call the main function.
return sliding_subarray_beauty(numbers, subarray_length, x_value)
def find_kth_smallest(number_counts, x_value):
sorted_numbers = sorted(number_counts.keys())
count = 0
for number in sorted_numbers:
count += number_counts[number]
if count >= x_value:
return number
return None
def sliding_subarray_beauty_optimal(numbers, subarray_length, x_value):
result = []
number_counts = {}
# Initialize the window
for i in range(subarray_length):
number = numbers[i]
number_counts[number] = number_counts.get(number, 0) + 1
# Iterate through the array, sliding the window
for i in range(len(numbers) - subarray_length + 1):
# Find the x_value-th smallest number (beauty)
beauty = 0
kth_smallest = find_kth_smallest(number_counts, x_value)
if kth_smallest is not None and kth_smallest < 0:
beauty = kth_smallest
result.append(beauty)
# Update the counts for the next window
if i < len(numbers) - subarray_length:
# Decrease the count of the outgoing number.
outgoing_number = numbers[i]
number_counts[outgoing_number] -= 1
if number_counts[outgoing_number] == 0:
del number_counts[outgoing_number]
# Increase the count of the incoming number.
incoming_number = numbers[i + subarray_length]
number_counts[incoming_number] = number_counts.get(incoming_number, 0) + 1
return result
def sliding_subarray_beauty_optimal_wrapper(numbers, subarray_length, x_value):
# Implementing the optimal solution.
return sliding_subarray_beauty_optimal(numbers, subarray_length, x_value)
def beauty_using_counts(number_counts, x_value):
count = 0
for number, frequency in sorted(number_counts.items()):
count += frequency
if count >= x_value:
return number if number < 0 else 0
return 0
def sliding_subarray_beauty_optimized(numbers, subarray_length, x_value):
result = []
number_counts = {}
# Initializing number_counts for the initial window.
for i in range(subarray_length):
number = numbers[i]
number_counts[number] = number_counts.get(number, 0) + 1
for i in range(len(numbers) - subarray_length + 1):
# Calculate beauty based on counts.
beauty = beauty_using_counts(number_counts, x_value)
result.append(beauty)
# Update the window counts, if there are more windows to process.
if i < len(numbers) - subarray_length:
# Remove the outgoing number.
outgoing_number = numbers[i]
number_counts[outgoing_number] -= 1
# Remove the outgoing number, if its count drops to 0.
if number_counts[outgoing_number] == 0:
del number_counts[outgoing_number]
# Add the incoming number.
incoming_number = numbers[i + subarray_length]
number_counts[incoming_number] = number_counts.get(incoming_number, 0) + 1
return result
def sliding_subarray_beauty_optimized_wrapper(numbers, subarray_length, x_value):
# This function calls the main optimized solution.
return sliding_subarray_beauty_optimized(numbers, subarray_length, x_value)
Case | How to Handle |
---|---|
Empty input array | Return an empty list since a sliding window cannot be formed. |
Window size `k` is larger than the array size | Return an empty list because a valid window of that size cannot exist. |
Window size `k` is zero or negative | Throw an IllegalArgumentException, as window size must be positive. |
Array contains all negative numbers | The 'beauty' might always be the k smallest element, so sort correctly handling negative values. |
Array contains all zeros | Handle zeros appropriately; the beauty would be zero if kth smallest element is zero or negative. |
kth smallest element index calculation when k > array.length | Throw an error, or handle based on problem statement specifics, e.g. return min or max instead. |
Large array size to avoid potential integer overflow | Use long instead of int for storing large numbers and intermediate calculations to avoid overflow. |
Input array contains extremely large positive or negative numbers (boundary cases) | Ensure the algorithm can handle extreme number ranges without overflow or precision issues by using appropriate data types (long) and comparisons. |