You are given two strings a and b of the same length. Choose an index and split both strings at the same index, splitting a into two strings: aprefix and asuffix where a = aprefix + asuffix, and splitting b into two strings: bprefix and bsuffix where b = bprefix + bsuffix. Check if aprefix + bsuffix or bprefix + asuffix forms a palindrome.
When you split a string s into sprefix and ssuffix, either ssuffix or sprefix is allowed to be empty. For example, if s = "abc", then "" + "abc", "a" + "bc", "ab" + "c" , and "abc" + "" are valid splits.
Return true if it is possible to form a palindrome string, otherwise return false.
Notice that x + y denotes the concatenation of strings x and y.
Example 1:
Input: a = "x", b = "y" Output: true Explaination: If either a or b are palindromes the answer is true since you can split in the following way: aprefix = "", asuffix = "x" bprefix = "", bsuffix = "y" Then, aprefix + bsuffix = "" + "y" = "y", which is a palindrome.
Example 2:
Input: a = "xbdef", b = "xecab" Output: false
Example 3:
Input: a = "ulacfd", b = "jizalu" Output: true Explaination: Split them at index 3: aprefix = "ula", asuffix = "cfd" bprefix = "jiz", bsuffix = "alu" Then, aprefix + bsuffix = "ula" + "alu" = "ulaalu", which is a palindrome.
Constraints:
1 <= a.length, b.length <= 105a.length == b.lengtha and b consist of lowercase English lettersWhen you get asked this question in a real-life environment, it will often be ambiguous (especially at FAANG). Make sure to ask these questions in that case:
The brute force approach to this problem involves checking every possible way to split the two strings. We are essentially trying every combination of prefixes from one string and suffixes from the other to see if they form a palindrome, or vice versa.
Here's how the algorithm would work step-by-step:
def can_form_palindrome(first_string, second_string):
string_length = len(first_string)
def is_palindrome(input_string):
return input_string == input_string[::-1]
# Iterate through possible split points in the first string
for split_index in range(string_length):
first_string_prefix = first_string[:split_index]
first_string_suffix = first_string[split_index:]
# Check if suffix of first string and prefix of second string form a palindrome
combined_string_one = first_string_suffix + second_string[:string_length - split_index]
if is_palindrome(combined_string_one):
return True
# Check if suffix of second string and prefix of first string form a palindrome
second_string_prefix = second_string[:split_index]
second_string_suffix = second_string[split_index:]
combined_string_two = second_string_suffix + first_string[:string_length - split_index]
if is_palindrome(combined_string_two):
return True
return False
def split_two_strings(first_string, second_string):
# Check if either combination of splits can form a palindrome
if can_form_palindrome(first_string, second_string):
return True
# Need to also check the other string order too
if can_form_palindrome(second_string, first_string):
return True
# If no combination created a palindrone, return false
return FalseThe challenge is to combine two strings to create a palindrome. Instead of exhaustively checking all combinations, we cleverly look for a 'split point' where we can combine parts of the two strings to form a palindrome efficiently.
Here's how the algorithm would work step-by-step:
def split_strings_to_make_palindrome(string_a, string_b):
string_length = len(string_a)
def is_palindrome(input_string):
left_index = 0
right_index = len(input_string) - 1
while left_index < right_index:
if input_string[left_index] != input_string[right_index]:
return False
left_index += 1
right_index -= 1
return True
def check_strings(first_string, second_string):
left_index = 0
right_index = string_length - 1
# Find the longest prefix of first_string that matches the suffix of second_string.
while left_index < right_index and first_string[left_index] == second_string[right_index]:
left_index += 1
right_index -= 1
# Check if the remaining part of either string is a palindrome.
if left_index >= right_index:
return True
sub_string = first_string[left_index:right_index + 1]
return is_palindrome(sub_string)
# Check if either combination results in a palindrome.
if check_strings(string_a, string_b) or check_strings(string_b, string_a):
return True
return False| Case | How to Handle |
|---|---|
| Both strings are empty | Return true, as an empty string is considered a palindrome. |
| One string is empty, the other is not. | Treat the non-empty string as the result of the merge and check if it is a palindrome. |
| Strings of length 1. | Check if either string is a palindrome by itself (single character is always a palindrome). |
| Strings are palindromes themselves. | Return True, as no splitting or merging is necessary. |
| Strings of very large length (performance) | Ensure algorithm avoids unnecessary string copying or repeated palindrome checks for optimal time complexity. |
| No split point results in a palindrome (e.g., 'abc', 'def') | Return false if all split and merge combinations fail to produce a palindrome. |
| Strings are identical but non-palindromic. | Any split point will result in a merge that isn't a palindrome, so return false. |
| Palindrome can be formed only when string a is prefix. | The algorithm should check for both scenarios: a prefix + b suffix and b prefix + a suffix. |