Given a root node reference of a BST and a key, delete the node with the given key in the BST. Return the root node reference (possibly updated) of the BST.
Basically, the deletion can be divided into two stages:
Example 1:
Input: root = [5,3,6,2,4,null,7], key = 3 Output: [5,4,6,2,null,null,7] Explanation: Given key to delete is 3. So we find the node with value 3 and delete it. One valid answer is [5,4,6,2,null,null,7], shown in the above BST. Please notice that another valid answer is [5,2,6,null,4,null,7] and it's also accepted.
Example 2:
Input: root = [5,3,6,2,4,null,7], key = 0 Output: [5,3,6,2,4,null,7] Explanation: The tree does not contain a node with value = 0.
Example 3:
Input: root = [], key = 0 Output: []
Constraints:
The number of nodes in the tree is in the range [0, 10^4]. -10^5 <= Node.val <= 10^5 Each node has a unique value. root is a valid binary search tree. -10^5 <= key <= 10^5
Follow up: Could you solve it with time complexity O(height of tree)?
## Deleting a Node in a BST
This problem focuses on how to delete a node with a given key from a Binary Search Tree (BST) while maintaining the BST properties.
### Algorithm
1. **Search for the Node:** Traverse the tree to find the node with the key to be deleted.
2. **Deletion Cases:**
* **Node has no children (Leaf Node):** Simply remove the node.
* **Node has one child:** Replace the node with its child.
* **Node has two children:** Find the inorder successor (minimum value in the right subtree) or inorder predecessor (maximum value in the left subtree) of the node. Replace the node's value with the inorder successor/predecessor's value, and then delete the inorder successor/predecessor.
### Code Implementation (Python)
```python
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
def deleteNode(root: TreeNode, key: int) -> TreeNode:
if not root:
return None
if key < root.val:
root.left = deleteNode(root.left, key)
elif key > root.val:
root.right = deleteNode(root.right, key)
else:
# Node found
# Case 1: No child
if not root.left and not root.right:
return None
# Case 2: One child
if not root.left:
return root.right
if not root.right:
return root.left
# Case 3: Two children
# Find inorder successor (min of right subtree)
def minValueNode(node):
current = node
while(current.left is not None):
current = current.left
return current
temp = minValueNode(root.right)
root.val = temp.val
root.right = deleteNode(root.right, temp.val)
return root
class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) { this.val = val; }
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
class Solution {
public TreeNode deleteNode(TreeNode root, int key) {
if (root == null) {
return null;
}
if (key < root.val) {
root.left = deleteNode(root.left, key);
} else if (key > root.val) {
root.right = deleteNode(root.right, key);
} else {
// Node found
// Case 1: No child
if (root.left == null && root.right == null) {
return null;
}
// Case 2: One child
if (root.left == null) {
return root.right;
}
if (root.right == null) {
return root.left;
}
// Case 3: Two children
// Find inorder successor (min of right subtree)
TreeNode temp = minValueNode(root.right);
root.val = temp.val;
root.right = deleteNode(root.right, temp.val);
}
return root;
}
private TreeNode minValueNode(TreeNode node) {
TreeNode current = node;
while (current.left != null) {
current = current.left;
}
return current;
}
}
deleteNode
create a call stack that grows proportionally to the height of the tree.