Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all the functions of a normal stack (push
, top
, pop
, and empty
).
Implement the MyStack
class:
void push(int x)
Pushes element x to the top of the stack.int pop()
Removes the element on the top of the stack and returns it.int top()
Returns the element on the top of the stack.boolean empty()
Returns true
if the stack is empty, false
otherwise.Notes:
push to back
, peek/pop from front
, size
and is empty
operations are valid.For example:
Input
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 2, 2, false]
Explanation
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // return 2
myStack.pop(); // return 2
myStack.empty(); // return False
Can you implement the stack using only one queue?
## Implementing a Stack using Two Queues
This problem challenges us to implement a stack data structure, which follows the Last-In-First-Out (LIFO) principle, using only two queues. This means we can only use the standard queue operations: `push to back`, `peek/pop from front`, `size`, and `is empty`.
### 1. Naive Approach (Inefficient `push`)
One way to implement this is to use one queue (`q1`) for storing the stack elements and another queue (`q2`) as a temporary buffer during the `push` operation. The `push` operation becomes less efficient in this approach.
**Code (Python):**
```python
class MyStack:
def __init__(self):
self.q1 = [] # Main queue
self.q2 = [] # Temporary queue
def push(self, x: int) -> None:
# Move all elements from q1 to q2
while self.q1:
self.q2.append(self.q1.pop(0))
# Add the new element to q1
self.q1.append(x)
# Move all elements back from q2 to q1
while self.q2:
self.q1.append(self.q2.pop(0))
def pop(self) -> int:
if self.q1:
return self.q1.pop(0)
else:
return None # Or raise an exception
def top(self) -> int:
if self.q1:
return self.q1[0]
else:
return None # Or raise an exception
def empty(self) -> bool:
return not bool(self.q1)
Explanation:
push(x)
: This is the least efficient operation. We move all elements from q1
to q2
, add the new element x
to q1
, and then move everything back from q2
to q1
. This ensures that the latest element is always at the front of q1
.pop()
: We simply remove and return the element at the front of q1
.top()
: We return the element at the front of q1
without removing it.empty()
: We check if q1
is empty.push
)A more efficient approach is to make the push
operation O(1) and the pop
operation O(n). We maintain the stack elements in q1
. When pushing a new element, we simply enqueue it to q1
. When popping, we move all elements from q1
to q2
except the last one (which is the top of the stack), then we swap the names of q1
and q2
so that q1
becomes the queue with the remaining elements.
Code (Python):
class MyStack:
def __init__(self):
self.q1 = []
self.q2 = []
def push(self, x: int) -> None:
self.q1.append(x)
def pop(self) -> int:
if not self.q1: # Handle empty stack
return None
# Move all elements except the last one to q2
while len(self.q1) > 1:
self.q2.append(self.q1.pop(0))
# The last element in q1 is the top
top = self.q1.pop(0)
# Swap q1 and q2 so q2 becomes q1 for next operations
self.q1, self.q2 = self.q2, self.q1
return top
def top(self) -> int:
# Optimized top to use pop and push.
top = self.pop()
if top is not None:
self.push(top)
return top
def empty(self) -> bool:
return not self.q1
Explanation:
push(x)
: We simply add the new element to the rear of q1
. This is O(1).pop()
: We move all elements except the last one from q1
to q2
. The last element is the top of the stack, so we remove and return it. Then, we swap q1
and q2
to maintain the invariant. This is O(n).top()
: To get the top, call pop, store the value, push it back and then return. This utilizes existing functions and maintains stack properties.empty()
: We check if q1
is empty.push(x)
: O(1) - Constant time because we simply enqueue to q1.pop()
: O(n) - Linear time because we have to move n-1 elements from q1 to q2.top()
: O(n) - Linear time because it calls pop, which is O(n), and push, which is O(1), but pop dominates.empty()
: O(1) - Constant time to check if the queue is empty.pop()
or top()
are called on an empty stack. The code includes a check for if not self.q1:
in pop()
and top()
and returns None
. Alternatively, you could raise an exception.push(None)
. You could either allow it (treating None
as a valid value) or raise an exception.1 <= x <= 9
, so this is not a concern here.Yes, it's possible to implement a stack using only one queue. The key is to, during the push operation, enqueue the new element and then move all the existing elements to the back of the queue. This effectively puts the new element at the front of the queue, simulating the stack's LIFO behavior.
class MyStack:
def __init__(self):
self.q = []
def push(self, x: int) -> None:
self.q.append(x)
for _ in range(len(self.q) - 1):
self.q.append(self.q.pop(0))
def pop(self) -> int:
if self.q:
return self.q.pop(0)
else:
return None
def top(self) -> int:
if self.q:
return self.q[0]
else:
return None
def empty(self) -> bool:
return not bool(self.q)
In this single queue implementation:
push(x)
: O(n), as we need to rotate the elements after adding the new element.pop()
: O(1), as we remove from the front.top()
: O(1), as we peek at the front.empty()
: O(1).Space complexity is O(n).