Design a Skiplist without using any built-in libraries.
A skiplist is a data structure that takes O(log(n))
time to add, erase and search. Comparing with treap and red-black tree which has the same function and performance, the code length of Skiplist can be comparatively short and the idea behind Skiplists is just simple linked lists.
For example, we have a Skiplist containing [30,40,50,60,70,90]
and we want to add 80
and 45
into it. The Skiplist works this way:
Artyom Kalinin [CC BY-SA 3.0], via Wikimedia Commons
You can see there are many layers in the Skiplist. Each layer is a sorted linked list. With the help of the top layers, add, erase and search can be faster than O(n)
. It can be proven that the average time complexity for each operation is O(log(n))
and space complexity is O(n)
.
See more about Skiplist: https://en.wikipedia.org/wiki/Skip_list
Implement the Skiplist
class:
Skiplist()
Initializes the object of the skiplist.bool search(int target)
Returns true
if the integer target
exists in the Skiplist or false
otherwise.void add(int num)
Inserts the value num
into the SkipList.bool erase(int num)
Removes the value num
from the Skiplist and returns true
. If num
does not exist in the Skiplist, do nothing and return false
. If there exist multiple num
values, removing any one of them is fine.Note that duplicates may exist in the Skiplist, your code needs to handle this situation.
Example 1:
Input ["Skiplist", "add", "add", "add", "search", "add", "search", "erase", "erase", "search"] [[], [1], [2], [3], [0], [4], [1], [0], [1], [1]] Output [null, null, null, null, false, null, true, false, true, false] Explanation Skiplist skiplist = new Skiplist(); skiplist.add(1); skiplist.add(2); skiplist.add(3); skiplist.search(0); // return False skiplist.add(4); skiplist.search(1); // return True skiplist.erase(0); // return False, 0 is not in skiplist. skiplist.erase(1); // return True skiplist.search(1); // return False, 1 has already been erased.
Constraints:
0 <= num, target <= 2 * 104
5 * 104
calls will be made to search
, add
, and erase
.## Skiplist Implementation in Python
Here's a Python implementation of a Skiplist data structure without using any built-in libraries, along with explanations, complexity analysis, and edge case handling.
### Naive Solution (Sorted List)
Before diving into the Skiplist, let's consider a naive approach using a simple sorted list. This allows for `O(n)` search, insert, and delete operations.
```python
class SortedList:
def __init__(self):
self.items = []
def search(self, target):
return target in self.items
def add(self, num):
self.items.append(num)
self.items.sort()
def erase(self, num):
if num in self.items:
self.items.remove(num)
return True
return False
This approach is simple but inefficient for large datasets.
import random
class Node:
def __init__(self, val, level):
self.val = val
self.forward = [None] * (level + 1)
class Skiplist:
def __init__(self, max_level=16, p=0.5):
self.max_level = max_level
self.p = p
self.level = 0
self.head = Node(-1, max_level)
def random_level(self):
level = 0
while random.random() < self.p and level < self.max_level:
level += 1
return level
def search(self, target):
node = self.head
for i in range(self.level, -1, -1):
while node.forward[i] and node.forward[i].val < target:
node = node.forward[i]
if node.forward[0] and node.forward[0].val == target:
return True
return False
def add(self, num):
update = [None] * (self.max_level + 1)
node = self.head
for i in range(self.level, -1, -1):
while node.forward[i] and node.forward[i].val < num:
node = node.forward[i]
update[i] = node
level = self.random_level()
if level > self.level:
for i in range(self.level + 1, level + 1):
update[i] = self.head
self.level = level
new_node = Node(num, level)
for i in range(level + 1):
new_node.forward[i] = update[i].forward[i]
update[i].forward[i] = new_node
def erase(self, num):
update = [None] * (self.max_level + 1)
node = self.head
for i in range(self.level, -1, -1):
while node.forward[i] and node.forward[i].val < num:
node = node.forward[i]
update[i] = node
if node.forward[0] and node.forward[0].val == num:
node_to_delete = node.forward[0]
for i in range(self.level + 1):
if update[i].forward[i] != node_to_delete:
break
update[i].forward[i] = node_to_delete.forward[i]
while self.level > 0 and self.head.forward[self.level] is None:
self.level -= 1
return True
return False
search
function will correctly return False
, and the add
function will create the first node.search
will return true if the target exists, even if there are multiple instances. erase
will remove only one instance of the value.search
function correctly returns False
if the target is smaller than the smallest value in the skiplist.search
function correctly returns False
if the target is larger than the largest value in the skiplist.erase
function correctly updates the level
of the skiplist as elements are removed, ensuring that the skiplist doesn't have unnecessary layers.skiplist = Skiplist()
skiplist.add(1)
skiplist.add(2)
skiplist.add(3)
print(skiplist.search(0)) # Output: False
skiplist.add(4)
print(skiplist.search(1)) # Output: True
print(skiplist.erase(0)) # Output: False
print(skiplist.erase(1)) # Output: True
print(skiplist.search(1)) # Output: False